
Quotient Filters: Approximate Membership Queries
on the GPU

Afton Geil
University of California, Davis

angeil@ucdavis.edu

Martin Farach-Colton
Rutgers University

farach@cs.rutgers.edu

John D. Owens
University of California, Davis

jowens@ece.ucdavis.edu

Abstract—In this paper, we present our GPU implementation
of the quotient filter, a compact data structure designed to
implement approximate membership queries. The quotient filter
is similar to the more well-known Bloom filter; however, in
addition to set insertion and membership queries, the quotient
filter also supports deletions and merging filters without requiring
rehashing of the data set. Furthermore, the quotient filter can
be extended to include counters without increasing the memory
footprint. This paper describes our GPU implementation of two
types of quotient filters: the standard quotient filter and the rank-
and-select-based quotient filter. We describe the parallelization of
all filter operations, including a comparison of the four different
methods we devised for parallelizing quotient filter construction.
In solving this problem, we found that we needed an operation
similar to a parallel scan, but for non-associative operators. One
outcome of this work is a variety of methods for computing
parallel scan-type operations on a non-associative operator.

For membership queries, we achieve a throughput of up to
1.13 billion items/second for the rank-and-select-based quotient
filter: a speedup of 3x over the BloomGPU filter. Our fastest filter
build method achieves a speedup of 2.1–3.1x over BloomGPU,
with a peak throughput of 621 million items/second, and a rate
of 516 million items/second for a 70% full filter. However, we
find that our filters do not perform incremental updates as fast
as the BloomGPU filter. For a batch of 2 million items, we
perform incremental inserts at a rate of 81 million items/second
– a 2.5x slowdown compared to BloomGPU’s throughput of 201
million items/second. The quotient filter’s memory footprint is
comparable to that of a Bloom filter.

Keywords-GPU computing; algorithms; data structures; ap-
proximate membership queries; Bloom filter

I. INTRODUCTION

In this work, we focus on an approximate membership

query (AMQ) data structure for the GPU. AMQs, such as
Bloom filters [1], are probabilistic data structures that support
lookup and update operations on a set S of keys. The chief
advantage of AMQs lies in their space efficiency: they use
much less space than traditional dictionaries like hash tables.
This advantage is particularly important on GPUs, because
even today’s most powerful GPUs have a relatively small
memory (e.g., NVIDIA’s Tesla P100 has 16 GB of DRAM).
Since many databases, networks, and file systems benefit from
the quick filtering of negative queries (often to avoid costly
disk or network accesses), AMQs have found wide use. Such
applications are emerging research areas on GPUs [2], [3], [4].
This space advantage comes with a tradeoff: in an AMQ,

membership queries are only approximate. For a key k 2 S,

LOOKUP(k) returns “present,” but for k 62 S, LOOKUP(k) can
also return “present,” with probability at most ✏, where ✏ is
a tunable false-positive rate. An AMQ that has false positive
rate ✏ requires at least n log(1/✏) bits, and AMQs exist that
achieve this bound, up to low order terms. So the introduction
of a false positive rate allows the AMQ to use many fewer
bits than an error-free data structure.

Bloom filters (BF) are the most well-known AMQ. A Bloom
filter represents a set with a bit array. To insert a value, the
filter hashes the value using k hash functions whose outputs
each correspond to a location in the bit array and sets the bit
at each of these locations. To perform a lookup on a value,
the BF computes the k hashes and checks whether the bits at
all of the corresponding locations are set.

The Bloom filter is straightforward to implement, but has
three significant shortcomings: it achieves poor data locality,
it does not support delete operations, and it is still a multi-
plicative factor bigger than the optimal bound noted above. We
implement an alternative to the BF: the quotient filter (QF).
The quotient filter [5] is designed to maintain locality of data,
and beyond supporting all the functionality of the BF, it also
supports deletions and the merging of filters. Additionally, the
QF can be extended to include counters [6]. We implement two
versions of the QF on the GPU, the standard quotient filter
(SQF) and the rank-and-select-based quotient filter (RSQF),
and compare their relative strengths and weaknesses on this
massively parallel architecture. Prior to our work, full QF
implementations have been limited to the CPU.

We describe new algorithms for parallel inserts into SQFs
and RSQFs. We also investigate techniques for parallelizing a
bulk build of the filter, when a significant portion of the full
dataset is available at the outset. We find that this involves
implementing a parallel scan with a non-associative operator,
and we present implementations of three distinct approaches
to this problem. We show that our GPU SQF achieves signif-
icantly faster lookups, has faster bulk build times, and uses
significantly less memory than BloomGPU. In addition to
enabling new applications with increased functionality, our
GPU quotient filters can be used as a drop-in replacement for
a Bloom filter in any of their existing GPU applications [7],
[8], [9], [10], [11], [12].

II. RELATED WORK

Prior work on AMQs for the GPU concentrates on Bloom
filters. Much of this work has focused solely on using the
GPU to accelerate lookup queries, using the CPU for filter
construction and updates [7], [8], [9], [10], [11]; however,
Costa et al. [13] and Iacob et al. [12] do implement both
the filter build and queries on the GPU. Costa et al.’s imple-
mentation was open-sourced, so we chose to use their filter as
our primary reference for comparison. Their BloomGPU filter
parallelizes queries in a straightforward way, by assigning one
insert or lookup operation to each thread.
There have been two previous parallel quotient filter imple-

mentations on CPUs. Dutta et al. [14] implement a parallel
version of their streaming quotient filter, an AMQ designed
for removing duplicates from streams of data. Pandey et
al. [6] also implement a multithreaded version of their counting
quotient filter, which uses the same structure as their rank-and-
select-based quotient filter, described in Section III-B. Their
implementation depends on per-thread locking that does not
scale to the parallelism of a GPU.

III. THE QUOTIENT FILTER
This section describes the standard quotient filter and rank-

and-select-based quotient filter and algorithms for serial oper-
ations on these data structures.

A. Standard Quotient Filters

The quotient filter [5], which we refer to in this paper as the
standard quotient filter (SQF), is an AMQ that represents a set
S from a universe U by a set of fingerprints. Let f : U ! [2p]
be a hash function that hashes elements of U into p-bit strings.
Let F = f(S) = {f(x)|x 2 S} be the set of hash values of the
elements of S. To perform an operation LOOKUP(x), the filter
checks whether f(x) 2 F . The QF stores these fingerprints
losslessly. Therefore, all false positives arise from collisions
in the hash function, where f(q) 2 F for a query q /2 S.
To store the set F , divide each of the p-bit hash values into

its upper and lower bits. The quotient, fq(x), is comprised of
the q high order bits, and the remainder, fr(x), is comprised
of the r = p � q low order bits. A QF can be thought of as
a hash table with chaining, where the quotients are the hash
values and the remainders are the values stored in the table, as
shown in the top of Figure 1. To insert a fingerprint f(x) into
the filter, store the remainder, fr(x) in the fq(x)-th bucket.
Although only r bits per item are stored, this scheme allows
the complete fingerprint to be recovered by recombining the
remainder value and the bucket number.
An SQF consists of an array A of length 2q , as in the

bottom of Figure 1, where each slot contains r + 3 bits: the
remainder plus 3 metadata bits. To insert an item x into the
filter, store fr(x) in slot A[fq(x)]. If there is already an item
in this slot, another item in the filter has the same quotient
value. Quotient filters deal with these collisions using linear
probing. Thus the remainder for a fingerprint may not always
in the canonical slot, A[fq(x)], but it can be found nearby.
The QF linear-probing algorithm maintains three invariants:

0 0 0
0

1 0 0
a

1
0 1 1

b

2
1 0 0

c

3
1 1 1

d

4
0 1 1

e

5
1 0 1

f

6
0 0 1

g

7
0 1 1

h

8
0 0 0
9

0 1 2 3 4 5 6 7 8 9

a

b

c

d

e

f g

h

run
cluster

is_occupied

is_continuation

is_shifted

1
1
3
3
3
4
6
6

a
b
c
d
e
f
g
h

A
B
C
D
E
F
G
H

f fq fr

Fig. 1: An example quotient filter (bottom) with 10 slots, and
its representation as a hash table with chaining (top). The filter
stores the set of fingerprints {A � H}. The remainder, fr , of a
fingerprint f is stored in the bucket specified by its quotient, fq .
The quotient filter stores the contents of each bucket in contiguous
slots, shifting elements as necessary and using three metadata bits to
enable decoding.

(1) Remainders may only be shifted forward (to the right) of
their canonical slot. (2) All remainders are stored in sorted
order such that if f(x) < f(y), fr(x) will be stored in a slot
before fr(y). (3) There are no empty slots between an item and
its canonical slot. These invariants guarantee that items with
the same quotient will be stored in sorted order in contiguous
slots, which we call a run. A cluster is a series of runs with
no empty slots between them.
A lookup, insert, or delete operation requires a sequential

search within a portion of the filter. Starting at the canonical
slot, search to the left to find the beginning of the cluster,
then search to the right to find the item’s run. The SQF
encodes the information needed to determine which run each
remainder belongs to using three metadata bits per slot:
is_occupied, is_continuation, and is_shifted.
Operations maintain good locality, because all reads and writes
are in the region around the canonical slot. The performance
of all SQF operations is largely dependent on the time spent
searching backwards and forwards through the clusters, which
is determined by the cluster length. Bender et al. [5] prove
that cluster lengths are bounded by a constant in expectation
and logarithmically with high probability. Therefore, serial
quotient filter operations finish in expected constant time.
As previously mentioned, a QF has a non-zero probability of

false positives, meaning a membership query will occasionally
return ”present” for an item that is not in the set. False
positives happen when two keys hash to the same fingerprint—
a hard collision. However, as Bender et al. [5] demonstrate,
the probability of a hard collision is 2�r; therefore, increasing
or decreasing the number of bits in the remainder gives a trade
off between query accuracy and memory usage.

B. Rank-and-Select-Based Quotient Filters

Pandey et al. [6] designed the RSQF to improve upon the
SQF by increasing lookup performance at high load factors

and reducing the number of metadata bits.1 Their filter stores
the remainders using the same slot locations and order as the
SQF, but it uses a different metadata scheme for locating items
within the filter. Figure 2 shows the basic structure of the
RSQF. The RSQF stores two metadata bits for each remainder
slot: occupieds and runEnds. These bits are stored in
separate bit arrays, rather than within the remainder slots
themselves, and are accessed via rank() and select()

bit vector operations. To find a run, compute the rank of its
occupied bit, then select the runEnd bit of the same rank.
To maintain locality of these operations, the filter is divided
into blocks of 64 slots, each with an 8-bit offset value to
track any overflows from previous blocks. The work required
to locate a run is independent of the fill fraction, which means
lookup performance does not decrease much as the filter fills
up. However, inserts do still require a search to locate the next
empty slot and to move items around, so insert performance
does decrease with fill fraction, just as in the SQF.

IV. GPU STANDARD QUOTIENT FILTER OPERATIONS

We now describe the GPU implementation of membership
queries (lookups), insertions, deletions, and merges. We also
devise three parallel methods to construct a quotient filter from
a list of elements and consider the advantages of each.
The QF stores hashed keys. An important feature of hash

values is that they are uniformly distributed, no matter the
input, which has pros and cons. On the negative side, uni-
formity undermines memory locality. On the positive side,
uniform distributions favor load balance. Finally, uniformity
makes hashes easier to test, since all workloads yield the same
behavior, as long as keys are not repeated.

A. Lookups

In order to maximize locality between neighboring threads,
we first hash and sort the input values. We then assign one
membership query per thread and perform a sequential lookup.
Pseudocode is shown in Algorithm 1. Performing lookup
operations in parallel does not require collision avoidance,
because lookups do not modify the QF. Varying cluster lengths
results in divergence between threads within warps. However,
cluster lengths are small, and therefore each lookup operation
will take constant time in expectation and logarithmic time
with high probability.

B. Supercluster Inserts

Assigning one insert per thread can lead to race conditions if
different threads try to modify the same slot at the same time.
Therefore, we must determine a set of inserts that we can
safely perform in parallel. To do this, we identify independent
regions of the quotient filter, which we call superclusters; we
only perform one insert per supercluster at a time. We define a
supercluster as a region ending with an empty slot. This empty

1They also extend RSQF functionality by storing compact counters in the
remainder slots. We chose not to include counters in our GPU implementations
in order to focus on how the fundamental differences in the AMQs affect the
parallelism we can extract from these data structures.

slot allows us to insert a single new element without shifting
any elements into another supercluster’s space. See Figure 3.
In parallel, we mark each slot whose preceding slot is

empty with a 1. Then we use the CUB library DeviceScan

primitive to perform a prefix sum of these bits and label each
slot with its supercluster number. The items in the insert queue
then bid for exclusive access to their supercluster. We then
insert these items, remove them from the queue, and repeat
the process until all items have been inserted. Pseudocode is
shown in Algorithm 3.
The parallelism of this method is significantly constrained

by the number of superclusters in the filter, and as the filter
gets fuller, there are fewer superclusters. Additionally, like
the lookup method, this insert implementation suffers from
warp divergence and lack of memory reuse between threads.
However, because the input values are hashed, the distribution
of items between superclusters should be roughly uniform,
resulting in good load balancing.

C. Bulk Build

Consider inserting a batch of items into an empty QF. We
will do so by computing every item’s final location in parallel
and then scattering them to their locations.
We begin by computing the fingerprints, sorting them, and

splitting them into quotient and remainder values. To compute
the location of each item, recall from Section III-A that an
element is located either in its canonical slot (shift = 0) or
shifted to the right (shift > 0). Figure 4 illustrates how items
from runs with lower quotient values can shift items in later
runs. The shift amount for the first element in a run is the
shift amount for the first element in the previous run plus
the number of items in the previous run minus the distance
between the canonical slots of the two runs. Essentially, we
keep a running total of underflow/overflow.
Astute parallel programmers might immediately think

“prefix-sum”. But recall the resulting shift value must be non-
negative, so we must saturate the sum at each step so that
the resulting shift never goes below zero. Alternatively, when
directly computing the location of elements (as opposed to
computing their shift values), we could consider a prefix-
sum operator of max(value(i�1)+1, valuei). Neither of these
operations is associative, thus we cannot use any existing
GPU methods that implement prefix-sum, all of which require
associative operators. However, both of these operators have an
important property that allows us to extract parallelism: certain
inputs, including those we see in quotient filter construction,
break the dependency chain between output items. At each
point where the saturation to zero happens in the prefix sum
formulation, or where the max(value(i�1)+1, valuei) operator
outputs valuei, the contribution from the scan of all preceding
values to the items that follow is zero. In this way, the problem
can be thought of as a segmented scan in which the segment
divisions are initially unknown, and we can parallelize over
segments.
We explored three methods for bulk QF builds on the GPU,

each of which approaches the non-associative scan problem

0 1 0 0 1 0 1 0 0 1

0 0 1 0 0 0 1 1 0 1

a b c d e f g

occupieds

runEnds

remainders

offset occupieds runEnds remainders offset occupieds runEnds remainders offset occupieds runEnds remainders

Fig. 2: Example rank-and-select-based quotient filter with three blocks of ten slots per block. The occupied and runEnds bit arrays are
used to locate items in the filter, and each block has an offset value to account for any overflow from previous blocks. The example
block (bottom) is shown with the metadata bit arrays oriented above the remainder values to illustrate how these bits are used to determine
which run each remainder belongs to. This block has four non-empty runs (denoted by the different colored blocks) with one to three items
in each run.

0 0 0 1 0 0

a
1 1 1

b
0 0 1

c
0 0 0 1 0 0

d
0 0 0 0 0 0 1 0 0

e
0 1 1

f
0 1 2 3 4

Fig. 3: Example quotient filter figure with corresponding supercluster
labels. Superclusters represent independent regions of the filter, where
we may perform inserts in parallel without incurring data races.

1 0 0

a
0 1 1

b
0 0 0 1 0 0

A
0 1 1

B
0 1 1

C
0 0 0 1 0 0

1
0 1 1

2
0 1 1

3
1 0 0

a
0 1 1

b
0 1 1

c
1 1 1

d
0 0 1

A
0 1 1

B
0 1 1

C
1 0 0

1
0 1 1

2
0 1 1

3

Fig. 4: Example quotient filter arrays showing the interdependence
of item locations in different runs. ABC is a run of elements with
quotient = 3. With the addition of c and d to slot 0, ABC must be
shifted right one slot.

differently:
—Parallel merging (Section IV-C1) begins with one seg-

ment for each unique quotient in the dataset, then iteratively
merges pairs of segments together, checking the saturation
condition as each pair merges and only sending the output
of the scan from the left segment as the input to the right if
the saturation condition is not met.
—Sequential shifting (Section IV-C2) applies the operation

to every pair of neighboring runs in each iteration, checking
the saturation condition, and iterating until the scan has been
carried through the end of the longest independent cluster.
—Segmented layouts (Section IV-C3) assumes that every

segment of log(n) items is independent and computes the scan
serially within these segments. In each iteration, each segment
sends the partial scan for its last item to become the initial
value for the segment to its right. Because the quotient values
are the result of a hash function, this process converges after
a small number of iterations.
1) Bulk Build Via Parallel Merging: This first implemen-

tation of bulk build uses an iterative merging process, which
finishes after O(q) = O(log(n)) iterations, or more precisely,
log(number used quotients) iterations. First, we compute the
items’ unshifted locations with a segmented scan. Next, we
label the segments in parallel by checking quotient[idx] 6=
quotient[idx�1] then performing a prefix sum. Initially, items

will only be grouped with the other items in their run, as
shown in iteration 0 of Figure 5, but these segments will grow
as we run our merging algorithm.
Each iteration of the merging algorithm, shown in Figure 5,

consists of two steps. First, for all pairs of segments, we
compare the last element in the left-hand segment and the first
element in the right-hand segment and compute the overflow or
underflow. Second, for all elements, we compute and apply the
shift using the overflow/underflow for the segment. We account
for any empty filter slots and prevent extraneous shifting by
storing negative shift values in a credits array. The pseudocode
for this build method is shown in Algorithm 4.
2) Bulk Build Via Sequential Shifting of Runs: In our

second method, shown in Figure 6, we compute unshifted
locations and label the segments, just as we did for the parallel
merging bulk build. We then shift the filter elements iteratively;
however, instead of combining the runs into larger segments,
we launch one thread per run in each round to determine
whether the run needs to be shifted to avoid overlap with the
previous run. Threads set a global flag each time they perform
a shift, which we check (then clear) after each iteration to
determine whether or not to launch the kernel again. When a
kernel finishes without shifting any elements, the algorithm is
finished. Pseudocode is in Algorithm 5.
3) Segmented Layouts: Our third bulk build method com-

putes shifts in segments of the filter itself, exploiting the
fact that the input is hashed, and therefore, items are dis-
tributed approximately evenly throughout the filter. For this
method, we partition the quotient filter into segments of length
log(numSlots) = log(2q) = q. Each segment has all items
whose quotients fall within the segment and an initial shift
value for the segment. We launch one thread per segment
to lay out all of the items in its segment given the initial
shift and output an overflow value. These overflow values are
then passed as initial shifts for the next segment, as shown
in Figure 7, and the process repeats until no new overflows
are generated. Because the quotient values are the result of a
hash function, this process converges after a small number of
iterations. Pseudocode is in Algorithm 6.

a) Comparison of Build Methods: We have now devised
four different ways (including supercluster inserts) to construct
a QF from scratch. We evaluate these methods experimentally

0 2 3 4 43 4 6 9 10 10iteration = 0

0 2 3 4 53 4 6 9 10 10

shift = 0 shift = 1 shift = 0

0 2 3 4 75 6 6 9 10 11

shift = 2 shift = 1

iteration = 1

iteration = 2

0 2 3 4 75 6 8 9 10 11iteration = 3

shift = 2

cr = 0 cr = 0 cr = 0 cr = 0 cr = 0 cr = 0 cr = 0 cr = 0 cr = 0 cr = 0 cr = 0

cr = 0

cr = 0

cr = 0

cr = 1 cr = 1 cr = 1 cr = 0 cr = 0 cr = 0 cr = 0 cr = 2 cr = 2 cr = 0

cr = 1 cr = 1 cr = 1 cr = 1 cr = 1 cr = 1 cr = 0 cr = 2 cr = 2 cr = 2

cr = 1 cr = 1 cr = 1 cr = 1 cr = 1 cr = 1 cr = 1 cr = 1 cr = 1 cr = 1

fq = 0 fq = 2 fq = 4 fq = 6 fq = 10fq = 3 fq = 9

Fig. 5: Diagram of our parallel merging bulk build algorithm. At the start, items are grouped into segments according to their quotient value
(canonical slot), fq , then in each iteration, neighboring segments are pairwise-merged and any necessary shifts are applied. The large number
in each box indicates the slot the associated remainder value will occupy in the final filter construction, and the number in the lower part of
the box (cr) denotes any credits from empty slots preceding the current slot.

0 2 3 4 43 4 6 9 10 10iteration = 0 change = T0 0 02 1 1

0 2 3 4 55 6 6 9 10 11iteration = 1 change = T0 0 00 2 0

0 2 3 4 75 6 6 9 10 11iteration = 2 change = T0 2 00 0 0

0 2 3 4 75 6 8 9 10 11iteration = 3 change = F0 0 00 0 0

Fig. 6: Diagram of our bulk build method using sequential shifting of runs. In each iteration, we launch one thread per run to check for
overlap between its run and the previous run and shift its run if necessary. As in Figure 5, the values in the boxes are the slots the items
will occupy in the quotient filter. The values above the arrows indicate the amount the next run must be shifted to avoid overlap. When all
of these shift values are 0, the process stops.

in Section VII-C, but intuitively, when is each one most
appropriate? When a filter is empty, there are a lot of available
superclusters, so supercluster inserts should work well. The
sequential shifting method would also be likely to work better
for filters that are less full, because clusters will be shorter,
leading to fewer shifts, and therefore, fewer iterations. The
parallel merging build requires a constant number of iterations,
so it will be the most efficient for building very full filters. The
segmented layouts build is likely to perform better for emptier
filters, but overall we would expect its running time to increase
only moderately as the fill fraction increases. Because the
segment length is always q, the segmented layout method also
requires the same amount of work in each round, independent
of the filter fullness.

We now compare the parallel complexity of these bulk
build algorithms. For the parallel merging and sequential
shifting builds, preprocessing involves a sort and two prefix
sums. For parallel merging, the merging process continues
for O(log(n)) iterations, where each iteration uses a constant
number of steps. So the makespan of the parallel merging build

is O(sort(n) + log(n)).

For the sequential shifting build, the shifting process con-
tinues until the shifts have been carried through all clusters.
This means the number of iterations is bounded by the number
of runs in the longest cluster. As Bender et al. show [5], the
largest cluster in a QF has size k = (1 + ✏) ln(n)

↵�ln(↵)�1 with
high probability. For a reasonable QF fill fraction, we can
approximate this as O(log(n)). Within each iteration, there
are a constant number of steps. Therefore, the makespan of
the sequential shifting build is O(sort(n)+ log(n)) with high
probability.

Preprocessing for the segmented layouts build only requires
a sort. The layout operation itself requires a sequential iteration
over the q = O(log(n)) slots in the segment. In the worst
case, the number of iterations is bounded by the maximum
shift for any one item in the filter. This shift is bounded
by the maximum cluster length, which is O(log(n)) with
high probability, so the complexity of this build method is
O(sort(n) + log2(n)) with high probability.

1 0 0

a
0 1 1

b
0 0 0 1 0 0

c
1 0 0

d
0 1 1

e
0 0 0 1 0 0

f
0 1 1

g
0 0 0 1 0 0

h
1 1 1

i
0 0 1

j
0 0 0 1 0 0

k
0 1 1

l
1 1 1

m
1 0 1

n
0 0 1

o
0 1 1

p
1 0 0

r
1 0 0

s
0 1 1

t
0 0 0 0 0 0 1 0 0

u
0 0 0 1 0 0

v
0 1 1

w
0 0 0

q

1 0 0

a
0 1 1

b
0 0 0 1 0 0

c
1 0 0

d
0 1 1

e
0 0 0 1 0 0

f
0 1 1

g
0 0 0 1 0 0

h
1 1 1

i
0 0 1

j
0 0 0 1 0 0

k
0 1 1

l
1 1 1

m
1 0 1

n
0 0 1

o
0 1 1

p
1 1 1

q
1 0 1

r
0 0 1

s
0 1 1

t
0 0 0 1 0 0

u
0 0 0 1 0 0

v
0 1 1

w
0 0 0

Fig. 7: Diagram of segmented layouts bulk build for a small example quotient filter. This filter contains three segments, and the layout of
each segment is computed in parallel, then checked for overflows. In the first iteration, item q is an overflow item, and gets bumped into
the next segment in the second iteration.

b) Generalization to Other Non-Associative Operators:

The strategies we used to approach this problem could be
used to compute a scan on other non-associative operators –
in particular, operators that include a saturation condition.
However, the performance of the sequential shifting and
segmented layouts methods relies on the ability to break
the chain of dependencies. Without independent segments,
the performance of these algorithms will be the same as
that of a serial algorithm. Fortunately, the QF provides us
with ample independent segments, because hashing distributes
items uniformly across the entire space of the filter. On the
other hand, the parallel merging algorithm requires an operator
that is associative between the breaks in the dependency chain.
It does not extract parallelism from these discontinuities, but
rather from the fact that these specific operators are associative
for all items between the saturation locations.

D. Supercluster Deletes

Deletes use an algorithm similar to the supercluster inserts
described in Section IV-B. We divide the filter into indepen-
dent supercluster regions similar to those used in the insert
method, but with a modification: we require that the first slot
in a supercluster be occupied and unshifted. This means the
slot is actually the head of a cluster. We know that the value
in this slot, and any shifted slots to its immediate right, will
not be affected by any deletes to the left because the item
is in its canonical slot. This also prevents the supercluster
from being comprised of only empty slots (with no items to
delete). We perform a bidding process to choose which items
to delete while avoiding collisions. We then delete one item
at a time per supercluster, shifting items left and modifying
metadata bits as needed. When all threads have finished, we
remove successfully deleted items from the queue and repeat.
The pseudocode for this operation is shown in Algorithm 7.

E. Merging Filters

Merging two QFs allows us to use one of our bulk build
operations to add a new batch of items to the filter. This
is a rebuild of the filter, but without the need to access or
rehash the items already stored in the filter. Merging is helpful
for some filter applications, e.g., combining datasets stored
by different nodes in a distributed system. The first step in
merging two QFs is to extract the original fingerprint values.
We do this in parallel by assigning one thread to each slot,

using the metadata bits to determine its quotient. We scatter
these fingerprints to an array, and compact out all of the
empty slots. We now have two sorted arrays: one for each
of the original filters. We merge these arrays using the GPU
merge path algorithm by Green et al. [15]. This leaves us with
one sorted array of fingerprints, which we can now input to
one of our three bulk build algorithms to construct the QF.
Pseudocode is in Algorithm 8.

V. GPU RANK-AND-SELECT QF OPERATIONS

In this section, we describe the algorithms we devised for
querying and modifying the rank-and-select-based quotient
filter (RSQF) on the GPU.

A. Lookups

For the RSQF, we parallelize lookups for the GPU in a simi-
lar fashion as we do for the SQF: hash and sort all inputs, then
assign one query per thread and have each thread perform the
same operation as in the serial case. The pseudocode for RSQF
lookups is Algorithm 2. Again, because lookup operations do
not modify the data structure, this simple parallelization works
without the addition of any collision avoidance schemes. The
sorting step increases memory locality between threads, as in
our SQF lookups, but here the benefit is much greater, because
metadata values are shared across all slots in an RSQF block,
rather than scattered amongst the remainder values.

B. Inserts

For RSQF inserts, our general strategy was to parallelize
over the blocks of the filter and perform inserts in batches.
Because each block has an offset value to account for any
spillover from previous blocks, the block holds all of the
necessary information to insert an item in any of the 64
slots within the block, assuming it does not overflow to
the next block. However, some items, particularly when the
filter reaches higher fill fractions, will need to overflow to
the next block. To deal with inserts that overflow into other
blocks while still avoiding race conditions, we allow threads
to modify more blocks as the filter gets fuller. To accomplish
this, we partition the filter into insert regions, and assign one
thread to each region. This is similar to the partitioning for
multi-threaded inserts devised by Pandey [6], but because the
GPU has many more threads than a CPU, our implementation
uses smaller regions than theirs. Initially, regions are one

block, and as more items have been inserted, the regions
increase in size (and, consequently, decrease in number). In
our implementation, we increase the region size by one block
every 16 iterations.
The entire insert operation proceeds as follows: Before

inserting a batch of items, we hash the inputs, then sort the
fingerprints, and divide them into queues based on their block
number. We then launch one CUDA thread per region to
perform the inserts, using the same basic algorithm as the
CPU implementation described in III-B. If an insert operation
would require a thread to modify a block that is not in its
assigned region (in the case of overflow to the next block),
the operation halts. When an insert is completed or halted, the
thread sets a flag if it still has items in its queue, to indicate that
the insert kernel should be launched again. The pseudocode
for this algorithm is shown in Algorithm 9.
The maximum amount of parallelism we can extract using

this method is constrained by the number of blocks in the
filter. Work balancing is dependent on the distribution of the
data: if many of the items hash to the same region of the filter,
the threads for other regions will finish their inserts and have
no more work to do while the busy thread is still working.
Because the input data is hashed, assuming a good hash
function, the most likely cause for an unbalanced workload
is repeated items.

C. Bulk Build, Deletes, Merging Filters

We did not implement bulk build, delete, or merge opera-
tions for the RSQF, but these operations can be performed
using a straightforward extension of the methods we used
in the SQF algorithms. The final slot numbers for all items
are the same for the SQF and RSQF, so we can use the
algorithms described in Section IV-C to compute the locations
of all items, with slight modifications in writing the values
to the filter to account for the different memory layout and
associated metadata values. Merges can also be implemented
analogously to the operation in Section IV-E by assigning
one thread per slot to extract fingerprints into an array, then
merging the arrays and rebuilding the new filter. Finally, just as
superclusters can be utilized in both SQF inserts and deletes,
our RSQF insert strategy of breaking the filter up by into small
regions and assigning one region to each thread can also be
applied to RSQF deletes.

VI. DESIGN DECISIONS AND TRADE-OFFS

In this section we justify some of the many design decisions
we made in adapting the SQF and RSQF to the GPU.

a) Remainders Divisible by 8 and char Containers:

Quotient filters are designed to be flexible in the number of
bits stored per item in order to allow the programmer to choose
the optimal trade-off between memory and error for their
application. However, this variability means that, because the
elements are stored contiguously in memory, a single slot may
be split between bytes (and even cache lines). For arbitrary
values of r, this opens up the possibility of memory conflicts,
even when we ensure threads are modifying different slots.

To simplify this issue, we chose to only use SQFs where the
number of bits per slot is divisible by 8. This gives us fewer
options in the trade-off between size and false positive rate,
but it simplifies our filter operations and increases the amount
of parallelism we can extract from the problem. Similarly, we
chose to store each SQF slot in one or more chars, rather
than fitting one or more remainders into a single int, so that
we are able to write to two neighboring slots without worrying
about write hazards.

b) Duplicates: For datasets with many reoccurring val-
ues, deduplication may be essential to speed up membership
queries and prevent the filter from over-filling. For the bulk
build algorithms, because all items are being inserted at
the same time, deduplication is not an inherent part of the
algorithm, as it is for incremental inserts; therefore, we give
an option for deduplication to be switched off or on, to allow
flexibility for different applications.

c) One Query Per Thread: We chose to use only one item
per thread for each QF lookup query. An alternative approach
would be to launch one query per warp and have threads search
cooperatively within clusters to locate the items. However,
this would not be very efficient because: (1) the average
cluster length is constant, as described in Section III-A, and
(2) threads must also keep track of metadata values to compute
the canonical slot for each value, which would be much more
complicated to resolve cooperatively.

d) RSQF Insert Region Size: For inserts into an RSQF,
we had a few different options for the granularity. We could
have identified the smallest independent regions in the RSQF,
similar to the superclusters in the QF. However, the blocked
structure of the RSQF means that operations within the same
block could lead to race conditions when modifying the
block-wide occupieds, runEnds, and offset values.
Alternatively, we could have based the size of the regions on
the filter’s fill fraction, to account for the increased likelihood
of interblock overflows as the fill fraction increases. Both
of these alternatives would also require a system of tracking
which items-to-be-inserted belong to each of the variable-sized
regions. We decided to take the simpler approach, where we
could perform an initial sort and create stable queues of items
to be inserted into each block.

e) Number of Iterations Between Each Extension of In-

sert Regions: We decided to increase the size of insert regions
every 16 iterations based on empirical evidence from our
experiments. This seemed to be the interval that worked best
for building a filter from scratch. For incremental updates,
the most efficient interval would likely vary based on the fill
fraction, which would require additional tuning and work to
track the fill fraction.

VII. RESULTS

We evaluate our GPU SQF and RSQF implementations
using synthetic datasets of 32-bit keys, generated using the
Mersenne Twister pseudorandom number generator. Because
the values are hashed before any QF operations are performed,
the distribution of the input data should not affect performance,

and random data should be sufficient to estimate AMQ per-
formance in real-world applications.
In all experiments, we used QFs with q = 23 ! 223 slots

and r = 5, or an error rate of ✏ ⇡ 0.03125. We compare our
GPU SQF and RSQF with a variety of other AMQs: Costa
et al.’s BloomGPU filter [13], Pandey et al.’s multithreaded
counting quotient filter (CQF) [6], Arash Partow’s Bloom
filter [16], and our own CPU SQF implementation, which uses
the serial operations described in Section III. We also modified
the BloomGPU filter to create a version (“BloomGPU 1-bit”)
using only one bit per element of the filter bit array, rather than
an entire byte. This required using atomic bitwise operations,
which were not yet supported by CUDA at the time that Costa
created BloomGPU. The invariant in our comparisons is false-
positive rate. Because we also inserted the same number of
items for all data structures and the BF error rate increases as
more bits are set, we increase the BF size as the comparable
QF fills up in order to maintain a similar false positive rate
in both filters. To achieve a balance between error rate and
accuracy, we chose to use 5 hash functions in all BFs.
All GPU experiments were run on a Linux workstation with

2 ⇥ 2.53 GHZ 4-core Intel E5630 Xeon CPUs, 12 GB of main
memory, and two GPUs: an NVIDIA Tesla K40c with 12 GB
on-board memory and an NVIDIA GeForce GTX 1080 with
8 GB of on-board memory. We ran all experiments on each
GPU separately and have noted any significant differences
in performance results between the two architectures in our
discussion. All source files were compiled with CUDA 8.0.
CPU experiments were run on a Linux workstation with one
3.7 GHz 4-core Intel E3-1280V5 CPU. We chose to use
a different workstation for our CPU experiments in order
to give a fair comparison to Pandey’s multithreaded CQF,
which utilizes recently-added x86 instructions to speed up the
rank() and select() operations [6]. We used 4 threads
for all multithreaded CQF experiments.

Summary of Results: Overall, we find that our SQF
outperforms BloomGPU on lookups and initial filter construc-
tion, while the BF achieves higher throughput for incremental
insert operations. The RSQF achieves a 2–3x speedup on
lookups compared to BloomGPU, but has lower incremental
insert throughput than the SQF. We find that the BloomGPU
1-bit modification has only a modest effect on the filter
performance, so we use this version as our primary reference
for comparison. We also discover that the segmented layouts
method is generally our fastest QF construction method.

A. Lookups

Figures 8 and 9 show the performance difference for
membership queries using BloomGPU and our GPU QFs
on the Tesla K40c and GTX 1080, respectively. For a fill
fraction ↵ < 0.8, our SQF achieves higher throughput than
BloomGPU. Both the SQF and RSQF show an initial increase
in throughput as the fill fraction increases. This is because at
the lower fill fractions, the batch size is not yet big enough to
fill the entire GPU. SQF query throughput is highly dependent
on fill fraction, because each lookup requires reading an entire

Fig. 8: Lookup performance on NVIDIA Tesla K40c for different
AMQs with varying fill rates. The batch size is all items in the filter.

cluster of elements, and as the filter gets full, the average
cluster length increases. Bender et al. recommend that a QF
remain  75% full for this reason. Our RSQF, on the other
hand, maintains a similar throughput across all fill fractions,
because the rank and select operations require the same
amount of compute across all fill fractions. The only linear
searching the RSQF performs in a lookup is within the item’s
run, which, at high fill fractions, is much smaller than a cluster.
As a result of this property, RSQF lookup throughput is higher
than the standard QF for ↵ � 0.5. BloomGPU filter throughput
also remains constant because the filter performs the same
number of reads per query for all fill fractions.
Comparing Figures 8 and 9, we see that all filters’ per-

formance improves with the new microarchitecture and in-
creased memory bandwidth. One notable difference is that the
BloomGPU 1-bit achieves very high throughputs at low fill
fractions on the GTX 1080. This is likely because the smallest
Bloom filters fit into the larger cache in the GTX 1080, and we
resize the Bloom filters to maintain equivalent false positive
rates.
All GPU filters show a large performance increase as the

batch size grows (Figure 10a). This illustrates the importance
of providing sufficient work to keep all GPU compute units
busy. At around 106 items per batch, BloomGPU throughput
levels out. At this point, the performance is memory-bound
for the BF, but not the QF, due to the greater locality of the
QF operations.

B. Inserts and Deletes

Figure 10b shows the change in insert and delete throughput
for a constant batch size (100000 items) as a function of
filter fullness. Performance for supercluster inserts and deletes
decreases as the filter fills and the number of superclusters
decreases. Also, the latency for each operation increases as
clusters grow and the GPU must search through a longer
section of the filter to locate the correct slot. This reinforces
the rule of thumb of maintaining a filter fullness of  75%.

Fig. 9: Lookup performance on NVIDIA GeForce GTX 1080 for
different AMQs with varying fill rates. The batch size is all items in
the filter.

We find that our RSQF inserts achieve lower throughput
than supercluster inserts, and that RSQF insert throughput
decreases as the filter gets fuller. This is because RSQF
inserts shift items to make room for new ones, so much
of the compute time is spent searching for empty slots and
rearranging items, and as the filter fills, these empty slots
become more difficult to locate. Figure 10b also shows a
performance comparison for supercluster inserts versus the
merge-and-rebuild (merge inserts) approach. For filters below
⇡ 80% full, supercluster inserts have a 2x speedup over
rebuilding, and even at 95% full, supercluster inserts still
achieve a slightly higher throughput.
All AMQs show a performance increase as the batch size

grows (Figure 10c); however, both the overall performance and
performance improvement are much lower for the QFs. This
is likely because the available parallelism is restricted to one
insert per supercluster for the SQF, and one insert per block
region for the RSQF. We can also see that for smaller batch
sizes, supercluster inserts are faster than merge inserts, but for
batch sizes of � 2 million items, it is actually faster to extract
the quotients and rebuild the filter with the new values.

C. Comparing Filter Build Methods

Figures 11 and 12 show the build throughput for all AMQs
on the Tesla K40c and GTX 1080. As with lookups, the
BloomGPU 1-bit inserts achieve high throughputs at low fill
fractions, likely because these smaller filters fit in the GTX
1080’s larger L2 cache.
As with lookups, the original 1-byte BloomGPU insert

performance does not vary with changing fill fraction; how-
ever, the 1-bit implementation does show a steady decrease
in throughput as the fill fraction increases. For fill fractions
↵ > 0.4, the 1-byte version achieves higher throughput than
the 1-bit version. This is likely due to the computational cost
of atomic operations required for 1-bit Bloom filter inserts.
All QF build methods have an initial increase in performance
before throughput either decreases or levels off. This increase

TABLE I: Data Structure Memory Use

Bytes/Item

Error Rate Standard QF RSQF BloomGPU Bloom 1-bit

0.03 1.3 0.94 7.7 0.96
0.0001 2.7 2.0 20.4 2.6
5⇥ 10�7 4.0 3.0 45.2 5.7

is probably because there is not enough work to fill the GPU
for very low fill fractions. After this initial ramping up, we
see different behavior for each of the build methods:

• Throughput for the parallel merging build increases
monotonically with fill rate, because the number of iter-
ations for this method is dependent only on the number
of quotients used. This is largely independent of the fill
fraction, so the computation required per item decreases
as the total number of items increases.

• The performance of the sequential shifting build increases
until the filter is about 50% full, then begins to fall off.
This is because as the filter gets full, the number of shifts,
and therefore, the number of iterations, will increase.
Additionally, the shift operation performed by each thread
is also serial, so as the quotients’ runs get longer, the
latency of each operation increases.

• The segmented layouts build method is the fastest for all
↵  0.85. This method achieves a peak throughput at
around 40% full, then performance decreases steadily as
the filter gets fuller and more iterations are required for
convergence. Even at the ideal maximum QF capacity
of ↵ = 0.75, this build method still achieves higher
throughput than BloomGPU.

• Deduplication does generally cause a moderate decrease
in throughput (Figure 13). Interestingly, in the sequential
shifting method, deduplication is costly for low filter
fullness, but becomes insignificant to overall throughput
as the filter fills and compute time is dominated by the
many iterations required to perform all of the shifts.

D. Memory Use

Table I shows memory usage for all GPU AMQs. The
RSQF has a smaller memory footprint than the SQF because
it can be filled up to 95% full without compromising lookup
performance, while the SQF should be sized to be 75%
full. We note two limitations of our QF implementation with
respect to memory usage: (1) Our SQF does not support a more
fine-grained selection of false positive rates because we require
slot sizes to be divisible into complete bytes, as described in
Section VI. (2) Our bulk build methods allocate additional
(temporary) memory to calculate element positions within the
filter. This means that we cannot bulk-build a filter on the GPU
that will fill a majority of the GPU on-board memory. For these
filters, we would need to perform incremental inserts in smaller
batches to construct the filter without running out of memory.
However, real-world use cases would require additional free
memory in order to read in batches of items for lookups
anyway.

(a) Lookup performance for different AMQs with
varying batch sizes, with an initial fill fraction of

↵ = 0.7.

(b) Insert and delete throughputs for the GPU QF
decrease as the filter fills.

(c) Insert performance for different AMQs with
varying batch sizes.

Fig. 10: Lookup and insert performance on the NVIDIA GeForce GTX 1080.

Fig. 11: Filter build performance on NVIDIA Tesla K40c for different
AMQ data structures with varying fill rates.

Fig. 12: Filter build performance on NVIDIA GeForce GTX 1080
for different AMQ data structures with varying fill rates

Fig. 13: Quotient filter build performance on NVIDIA GeForce GTX
1080 for all build methods at varying fill rates, with and without a
deduplication step.

VIII. CONCLUSIONS

For inserts alone, the simplicity of modifications and result-
ing high level of parallelism available for BFs outweighs the
locality benefits of the QF. In contrast, this locality does lead
to better GPU performance for QF lookups, where memory
conflicts are not an issue and parallelism is not constrained.
Recomputing dynamic independent regions between each

round of updates (supercluster inserts) leads to higher through-
put vs. parallelizing updates over fixed-sized regions (RSQF
inserts). Although computing the supercluster locations re-
quires additional work each round, it guarantees a priori that
inserts in those regions will succeed. For RSQF inserts, the
fixed-sized regions we use are not guaranteed to be conflict-
free and therefore require a strategy for handling overflows.
By contrast, in order to achieve a high level of parallelism
while avoiding conflicts for the supercluster inserts, we only
allow our SQF to use remainders that fit in full bytes, which
limits the number of available remainder sizes available. In the
RSQF, the blocking structure divides the filter into segments
that align with word boundaries, so we need not restrict the
RSQF size and corresponding false positive rate.

To parallelize bulk QF construction, we needed to perform
a parallel scan operation on a non-associative operator. In our
three bulk build implementations, we leverage the fact that
this operator has a saturation condition, and extract parallelism
from breaks in the dependency chain.
Finally, the GPU RSQF performance could be improved if

NVIDIA added support for a bit-manipulation operation equiv-
alent to the PDEP operation available on the Intel Haswell
architecture. This gives a significant performance boost on the
CPU and would likely have a similar benefit for the GPU.

ACKNOWLEDGMENTS

Leyuan Wang suggested the approach to bulk build that
became the basis of the algorithm in Section IV-C1. We would
like to thank Lauro Costa, et al. for giving us access to their
code for BloomGPU. We would also like to thank Prashant
Pandey for his help debugging our test code. We appreci-
ate financial support from NSF awards CCF-1724745, CCF-
1715777, CCF-1637458, CCF-1637442, and IIS-1541613, an
NSF Graduate Research Fellowship, and gifts from EMC and
NetApp.

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, Jul.
1970.

[2] F. Daoud, A. Watad, and M. Silberstein, “GPUrdma: GPU-side library
for high performance networking from GPU kernels,” in Proceedings of

the 6th International Workshop on Runtime and Operating Systems for

Supercomputers, ser. ROSS ’16, Jun. 2016, pp. 6:1–6:8.
[3] M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “GPUfs: Integrating a

file system with GPUs,” in Proceedings of the Eighteenth International

Conference on Architectural Support for Programming Languages and

Operating Systems, ser. ASPLOS ’13, Mar. 2013, pp. 485–498.
[4] N. Sundaram, A. Turmukhametova, N. Satish, T. Mostak, P. Indyk,

S. Madden, and P. Dubey, “Streaming similarity search over one billion
tweets using parallel locality-sensitive hashing,” Proceedings of the

VLDB Endowment, vol. 6, no. 14, pp. 1930–1941, Sep. 2013.
[5] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kusz-

maul, D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok,
“Don’t thrash: How to cache your hash on flash,” Proceedings of the

VLDB Endowment, vol. 5, no. 11, pp. 1627–1637, Aug. 2012.
[6] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose

counting filter: Making every bit count,” in Proceedings of the 2017

ACM International Conference on Management of Data, ser. SIGMOD
’17, 2017, pp. 775–787.

[7] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and S. Zhang, “IP routing
processing with graphic processors,” in Proceedings of the Conference

on Design, Automation and Test in Europe, ser. DATE ’10, Mar. 2010,
pp. 93–98.

[8] A. B. Vavrenyuk, N. P. Vasilyev, V. V. Makarov, K. A. Matyukhin,
M. M. Rovnyagin, and A. A. Skitev, “Modified Bloom filter for high
performance hybrid NoSQL systems,” Life Science Journal, vol. 11,
no. 7s, pp. 457–461, 2014.

[9] Y. Liu, B. Schmidt, and D. L. Maskell, “DecGPU: distributed error
correction on massively parallel graphics processing units using CUDA
and MPI,” BMC Bioinformatics, vol. 12, no. 1, p. 85, Mar. 2011.

[10] L. Ma, R. D. Chamberlain, J. D. Buhler, and M. A. Franklin, “Bloom fil-
ter performance on graphics engines,” in 2011 International Conference

on Parallel Processing, ser. ICPP 2011, Sep. 2011, pp. 522–531.
[11] I. Moraru and D. G. Andersen, “Exact pattern matching with feed-

forward Bloom filters,” J. Exp. Algorithmics, vol. 17, pp. 3.4:3.1–
3.4:3.18, Sep. 2012.

[12] A. Iacob, L. Itu, L. Sasu, F. Moldoveanu, and C. Suciu, “GPU
accelerated information retrieval using Bloom filters,” in 2015 19th

International Conference on System Theory, Control and Computing,
ser. ICSTCC 2015, Oct. 2015, pp. 872–876.

[13] L. B. Costa, S. Al-Kiswany, and M. Ripeanu, “GPU support for
batch oriented workloads,” in IEEE 28th International Performance

Computing and Communications Conference, ser. IPCCC 2009, Dec.
2009, pp. 231–238.

[14] S. Dutta, A. Narang, and S. K. Bera, “Streaming quotient filter: A near
optimal approximate duplicate detection approach for data streams,”
Proceedings of the VLDB Endowment, vol. 6, no. 8, pp. 589–600, Jun.
2013.

[15] O. Green, R. McColl, and D. A. Bader, “GPU merge path: A GPU
merging algorithm,” in Proceedings of the 26th ACM International

Conference on Supercomputing, ser. ICS ’12, Jun. 2012, pp. 331–340.
[16] A. Partow, “C++ Bloom filter library.” [Online]. Available: http:

//www.partow.net/programming/bloomfilter/index.html

Algorithm 1 SQF member-
ship queries
1: function FINDRUNSTART(S, fq)
2: . find beginning of cluster
3: b fq
4: while is shifted(S[b]) do
5: DECR(b)
6: . walk forward to find the run for fq
7: s b
8: while b 6= fq do
9: repeat
10: INCR(s) . skip current run
11: until !is continuation(S[s])
12: repeat
13: INCR(b) . count number of runs
14: until is occupied(S[b])

15: return s

16: function LOOKUP(S, inputs)
17: . preprocessing: hash and sort inputs
18: for all inputs do
19: fq bf [threadID]/2rc
20: fr f [threadID]%2r

21: if !is occupied(S[fq]) then
22: return FALSE
23: s FINDRUNSTART(S, fq)
24: . search slots in the run for fr
25: repeat
26: if S[s] = fr then
27: return TRUE
28: INCR(s)
29: until !is continuation(S[s])
30: return FALSE

Algorithm 2 RSQF mem-
bership queries
1: function LOOKUP(R, inputs)
2: . preprocessing: hash and sort inputs
3: for all inputs do
4: fq bf [threadID]/2rc
5: fr f [threadID]%2r

6: b fq/SLOTS_PER_BLOCK
7: slot fq%SLOTS_PER_BLOCK

8: if R[b][slot].occ = 0 then
9: return FALSE
10: r RANK(R[b].occ, slot)
11: end SELECT(R[b].run, r)
12: while end = NULL do
13: . run end is in next block
14: r r� POPCOUNT(R[b].run)
15: INCR(b)
16: end SELECT(R[b].run, r)
17: s end

18: repeat
19: ifR[b][s].rem = fr then
20: return TRUE
21: ifR[b][s].rem < fr then
22: return FALSE
23: DECR(s)
24: until s < fq _ R[b][s].run = 1

25: return FALSE

Algorithm 3 SQF inserts
1: function LOCATESUPERCLUSTERS(S)
2: . mark supercluster starts by checking for

empty slots
3: if ISEMPTY(S[threadID� 1]) then
4: return 1
5: else
6: return 0

7: function BIDDING(S, inputs, labels)
8: . one thread per input bids for supercluster
9: (fq , fr) HASHANDQUO-

TIENT(inputs[threadID])
10: sc labels[fq]
11: return winners[sc] threadID

12: function INSERTITEMS(S, inputs, winners)
13: . each thread performs its own sequential

insert operation
14: (fq , fr) HASHANDQUO-

TIENT(inputs[threadID])
15: if ISEMPTY(S[fq]) then
16: SETELEMENT(S, fq , fr)
17: return fq

18: s FINDRUNSTART(S, fq) . from
Algorithm 1.1

19: if is occupied(S[fq]) then
20: . search through run for item
21: repeat
22: if S[s] = fr then
23: SETELEMENT(S, s, fr)
24: return s
25: else if S[s] > fr then
26: break
27: INCR(s)
28: until !is continuation(S[s])

29: . insert item at location s; move items
right as needed

30: INSERTHERE(S, s, fr)
31: return s

32: function INSERT(S, inputs)
33: repeat
34: for all SQF slots do
35:

flags LOCATESUPERCLUSTERS(S)
36: for all SQF slots do
37: labels CUBSCAN(flags)
38: for all remaining inputs do
39: winners BIDDING(S, inputs,

labels)
40: for all superclusters do
41: slots INSERTITEMS(S, inputs,

winners)
42: for all remaining inputs do
43: . compact out inserted values
44: inputs CUBSELECT(inputs,

winners)
45: until length(inputs) = 0
46: return slots

Algorithm 4 Parallel Merging Bulk Build
1: function CALCOFFSETS(slot, label, credit, offset, carry)
2: seg label[threadID]
3: . compute offsets at odd-numbered segment heads:
4: if seg 6= label[threadID� 1] ^ seg%2 = 1 then
5: offset[seg] slot[threadID� 1]� slot[threadID] + 1
6: carry[seg] credit[threadID� 1]

7: return

8: function SHIFTITEMS(offset, carry, slot, label, credit)
9: seg labels[threadID]
10: overlap offset[seg]� credit[threadID]
11: empties 0
12: if overlap > 0 then . shift item
13: slot[threadID] slot[threadID] + overlap

14: empties 0
15: else . track any empty slots
16: empties empties� overlap

17: credit[threadID] empties + carry[seg]
18: . merge segments
19: label[threadID] label[threadID]/2
20: return

21: function PARALLELMERGEBUILD(S, inputs)
22: . preprocessing: hash, sort, compute unshifted locations, label seg-

ments
23: for i 0, dlog2(segments)e do
24: for all inputs do
25: CALCOFFSETS(slot, label, credit, offset, carry)
26: for all inputs do
27: SHIFTITEMS(offset, carry, slot, label, credit)
28: . post-processing: write remainders and metadata
29: return

Algorithm 5 Sequential Shifting Bulk Build
1: function SHIFTSEGMENTS(starts, slots, change)
2: index starts[threadID]
3: shift slots[index� 1]� slots[index] + 1
4: if shift > 0 then
5: length starts[threadID + 1]� index

6: for i 0, length do
7: slots[index + i] slots[index + i] + shift

8: change 1

9: return

10: function SEQUENTIALSHIFTBUILD(S, inputs)
11: . preprocessing: hash, sort, compute unshifted locations & segment

starts
12: change 1
13: while change = 1 do
14: change 0
15: for all segments do
16: SHIFTSEGMENTS(starts, locations, change)
17: . post-processing: write remainders and metadata
18: return

Algorithm 6 Segmented Layouts Bulk Build
1: function LAYOUT(fq , start, shift, overflow, change)
2: first start[threadID]
3: last start[threadID + 1]� 1
4: n last� first + 1
5: if n  0 then
6: . segment is empty
7: overflow[threadID] 0
8: return
9: . track the furthest right element in the segment
10: max threadID ⇤ q + shift[threadID� 1]
11: for i first, last do
12: if fq [i] > max then
13: max fq [i]

14: INCR(max)
15: . check for overflow and changes from last iteration
16: end ((threadID + 1) ⇤ q)� 1
17: extra (max� 1)� end

18: if extra > 0 then
19: overflow[threadID] extra

20: if extra > shift[threadID] then
21: change 1

22: else
23: overflow[threadID] 0

24: return

25: function SEGMENTEDLAYOUTSBUILD(S, inputs)
26: . preprocessing: hash, sort, compute segment starts
27: change 1
28: while change = 1 do
29: change 0
30: shift overflow

31: for all segments do
32: LAYOUT(fq , start, shift, overflow, change)
33: . post-processing: write remainders and metadata
34: return

Algorithm 7 SQF deletes
1: function LOCATEDELETESUPERCLUSTERS(S)
2: . superclusters for deletes are regular clusters
3: if !ISEMPTY(S[threadID])^!is shifted(S[threadID])

then
4: return 1
5: else
6: return 0

7: function DELETEITEMS(S, inputs, winners)
8: . each thread performs sequential delete operation
9: (fq , fr) HASHANDQUOTIENT(inputs[threadID])
10: if !is occupied(S[fq]) then
11: return
12: s FINDRUNSTART(S, fq) . from Algorithm 1.1
13: repeat
14: if S[s] = fr then
15: break
16: else if S[s] > fr then
17: return
18: INCR(s)
19: until !is continuation(S[s])
20: if S[s]! = fr then
21: return
22: . s now points to item to be deleted
23: . delete item; move other items over as needed
24: DELETEITEMHERE(S, s)
25: return

26: function DELETE(S, inputs)
27: repeat
28: for all SQF slots do
29: flags LOCATEDELETESUPERCLUSTERS(S)
30: for all SQF slots do
31: labels CUBSCAN(flags)
32: for all remaining inputs do
33: . from Algorithm 3.7
34: winners BIDDING(S, inputs, labels)
35: for all superclusters do
36: DELETEITEMS(S, inputs, winners)
37: for all remaining inputs do
38: . compact out inserted values
39: inputs CUBSELECT(inputs, winners)
40: until length(inputs) = 0
41: return

Algorithm 8 Merging Filters
1: function EXTRACTFINGERPRINTS(Q, empty)
2: if ISEMPTY(Q[threadID]) then
3: empty[threadID] TRUE
4: return
5: if !is shifted(Q[threadID]) then
6: . item is beginning of cluster
7: return (threadID << r) _Q[threadID]

8: . for shifted items, find beginning of cluster
9: b threadID

10: repeat
11: INCR(b)
12: until !is shifted(Q[b])
13: . step through cluster, counting runs
14: s b
15: while s  threadID do
16: repeat
17: INCR(s)
18: until !is continuation(Q[s])
19: if s > threadID then
20: repeat
21: INCR(b)
22: until !is occupied(Q[b])

23: return (b << r) _Q[threadID]

24: function MERGEFILTERS(Q1 , Q2)
25: for all QF slots do
26: f1 EXTRACTFINGERPRINTS(Q1 , empty1)
27: for all QF slots do
28: f2 EXTRACTFINGERPRINTS(Q2 , empty2)
29: for all QF slots do
30: THRUSTREMOVEIF(f1 , empty1)
31: for all QF slots do
32: THRUSTREMOVEIF(f2 , empty2)
33: for all extracted values do
34: fcombined MGPUMERGE(f1 , f2)
35: . rebuild new filter
36: SEGMENTEDLAYOUTSBUILD(Qnew , fcombined)
37: return

Algorithm 9 RSQF inserts
1: function INSERTINTOREGIONS(R, starts, nexts, fq , fr , size)
2: first threadID ⇤ size
3: last first + size� 1
4: value nexts[first]
5: block first

6: while value = NULL ^ block < last do
7: . insert queue for block is empty - check next one
8: INCR(block)
9: value nexts[block]

10: if value = NULL then
11: return . no items in queue
12: home fq [value]%SLOTS_PER_BLOCK

13: r RANK(R[block].occ, home)
14: end SELECT(R[block].run, r)
15: while end = NULL do
16: . run end is in next block
17: r r� POPCOUNT(R[block].run)
18: INCR(block)
19: end SELECT(R[block].run, r)
20: if block > last then
21: return TRUE . item is in next region
22: if end < home then
23: . slot is empty; insert item here
24: INSERTHERE(R, end, fr [value])
25: INCR(nexts[block])
26: return TRUE
27: else
28: . search through filter for first empty slot
29: INCR(end)
30: s FINDFIRSTUNUSEDSLOT(R, block, end)
31: if block > last then
32: return TRUE . out of region
33: while s > end do
34: . move items over until we get back to item’s run
35: R[block][s].rem R[block][s� 1].rem
36: R[block][s].rem R[block][s� 1].rem
37: DECR(s)
38: . find correct slot in run
39: repeat
40: ifR[block][s� 1].rem  fr [value] then
41: INSERTHERE(R, s, fr [value])
42: INCR(nexts[block])
43: return TRUE
44: DECR(s)
45: until s < home _ R[block][s].run = 1

46: INSERTHERE(R, s, fr [value])
47: INCR(nexts[block])
48: return TRUE

49: function FINDFIRSTUNUSEDSLOT(R, block, slot)
50: r RANK(R[block].occ, slot)
51: s SELECT(R[block].run, r)
52: while slot  s do
53: if s = NULL then
54: INCR(block)
55: s R[block].offset + 1

56: slot s + 1
57: r RANK(R[block].occ, slot)
58: s SELECT(R[block].run, r)
59: return slot

60: function FINDBLOCKSTARTINDICES(fq , starts)
61: block fq [threadID]/SLOTS_PER_BLOCK
62: previous fq [threadID� 1]/SLOTS_PER_BLOCK
63: if block 6= previous then
64: starts[block] threadID

65: function INSERT(R, inputs)
66: . preprocessing: hash, sort, quotienting
67: for all inputs do
68: FINDBLOCKSTARTINDICES(fq , starts)
69: iterations 1
70: size 1
71: while more do
72: more FALSE
73: nregions nblocks/size
74: for all regions do
75: more INSERTINTOREGIONS(R, starts, nexts, fq ,

fr , size)
76: INCR(iterations)
77: size iterations/16 + 1

78: return

